

Advanced Energy Communities: Enabling the customer centered grid

Ram Narayanamurthy Technical Executive

Electric Power Research Institute

Presentation at the Fresno USGBC Summit

11-1-2017

What is an Advanced Energy Community

Advanced Energy Communities (AEC) are customer centric demonstrations that integrate multiple customer resources such as Energy Efficiency, Demand Response, Customer storage, PV (or other local generation), electrification and electric vehicles in an electrically contiguous area to achieve larger utility and societal goals such as decarbonization, grid hardening and grid support while enabling customer comfort, convenience and cost benefits

Building Blocks of Advanced Energy Communities

Develop toolsets for controls architectures, customer analytics, and distribution planning

> Deploy controls platform for DR/DER management for distribution and bulk grid

Measure and analyze load demand, customer behavior, impact of rates and customer technology adoption

Implement demonstrations of customer DERs working with multiple stakeholders

Key aspects of AEC demonstrations

- Customer driven DERs including EE, DR, PV, DG and EV
- Focus on scaled field placements of high TRL technologies
- In-depth monitoring and analysis of energy generation and use, and customer comfort and behavior
- Distribution system impact measurements
- Resource aggregation for renewable balancing

Advanced Energy Communities White Paper

AN OVERVIEW OF ADVANCED ENERGY COMMUNITIES

- Published Advanced Energy Communities White Paper
- EPRI Product Number: 3002011115
- <u>https://membercenter.epri.com/abstrac ts/Pages/ProductAbstract.aspx?Produ ctId=00000003002011115</u>

ELECTRIC POWER RESEARCH INSTITUTE

Ongoing examples of Advanced Energy Communities

AEC requires coordination of many stakeholders

Need to work with field partners and end customers

Manage multiple subcontractors and local authorities

Customer centric connectivity architectures

Engage distribution planning and operations

Integrated Solutions are key to access full range of DER **Benefits**

Planned residential demo with multiple roof-top PV and a single storage system

LTC, Capacitor, ontro Regulator Local Controller System Controller Service Transformer Hybrid PV Battery Smar Solar and Load Forcasting nverte

LECTRIC POWER RESEARCH INSTITUTE

- Need to develop *integrated* control and management systems for distribution systems
- Address high penetrations of interconnected DER
 - Planned commercial demo with co-located PV ٠ and energy storage system

An example - Smart, Connected, Controllable Home

Solar & Storage

LECTRIC POWE

Controllable Loads

Smart Heat Pump Water Heater

Combining Efficient electrification with controllable loads, local generation and storage

Controls to Integrate EE, DR, PV and Storage

Example use cases for AEC results

IDSM Use Cases

Modeled vs. measured building energy use performance

Customer acceptance of utility energy management services

Electrification of building energy systems and impact on energy use and emissions

Control systems for aggregation of customer owned resources

Energy management for energy cost and rate optimization

Usage patterns for electric vehicles and other customer systems

Measurement of building capacitance for grid services

Grid Management Use Cases

Community scale distribution impacts Demand management technologies for distribution Microgrid technology and benefits Load aggregation for ISO benefits Recommendations for distribution planning practices

Utility Services Use Cases

Smart Home services and Advanced User Experience

Understanding customer preferences for DERs

Enabling utility IDSM programs through services and targeting

Examples of Advanced Energy Communities

Alabama Power Smart Energy Neighborhood

A 62 home Smart Home Community

- With Smart appliances, HEMS, 2x6 walls

A full scale microgrid with 300 kW solar and storage (size TBD)

Dedicated distribution line to neighborhood

Grid Integration of ZNE communities

Project Location 60 miles east of Los Angeles

Climate Zone 3B (warm and dry)

Annual peak temperatures ~ 105 F

20 homes on 2 transformers

Integrated Home Control System

Summary of Lessons learned from Southern California neighborhood

Interactive and competing impacts from electrification, energy efficient construction, solar PV, battery storage

"Duck Curve" at transformer.

- Storage makes small notch in peak and shifts by 2 hrs
- More capacity value for EE vs. PV
- EE helps distribution capacity limits

ELECTRIC POWER

RESEARCH INSTITUTE

Community Scale integration of Solar, EE, DR, EV (and maybe storage)

	S-Facing PV				W-Facing PV				
Plan	North	West	South	East	North	West	South	East	No
170	11	11	11	11	11	11	11	11	
175	12	12	12	12	13	13	13	13	
185	12	12	12	12	12	12	13	13	
205	13	13	13	13	13	13	13	13	
210	13	13	13	13	14	14	14	14	
220	13	13	13	13	14	14	14	14	
240	14	14	13	14	14	14	14	14	
260	15	15	15	15	15	15	15	16	
320	16	17	16	17	17	17	17	17	
350	18	18	18	18	19	19	19	19	

Exploring technology integration (e.g., Blockchain), economic value and market barriers

Orlando Buildings – Grid Home

New technology for high thermal mass to provide grid balancing All electric home with HPWH, HP, smart appliances and 8 kW PV

Energy storage included to test building capacitance with combined electrical and thermal storage for load balancing

EPRI will install Transformer Monitoring system to look at "edge of grid" impacts

EPRI Microgrid Feasibility Projects

Together...Shaping the Future of Electricity

